GAM plotting using ggplot2
plotGAM(gamFit, smooth.cov, groupCovs = NULL, orderedAsFactor = T, rawOrFitted = F, plotCI = T)
gamFit | fitted gam model as produced by mgcv::gam() |
---|---|
smooth.cov | (character) name of smooth term to be plotted |
groupCovs | (character) name of group variable to plot by, if NULL (default) then there are no groups in plot |
orderedAsFactor | if TRUE then the model is refitted with ordered variables as factors. |
rawOrFitted | If FALSE (default) then only smooth terms are plotted; if rawOrFitted = "raw" then raw values are plotted against smooth; if rawOrFitted = "fitted" then fitted values are plotted against smooth |
plotCI | if TRUE (default) upper and lower confidence intervals are added at 2 standard errors above and below the mean |
Returns a ggplot object that can be visualized using the print() function
Other Plotting: plotGAMM
data <- data.frame(x = rep(1:20, 2), group = rep(1:2, each = 20)) set.seed(1) data$y <- (data$x^2)*data$group*3 + rnorm(40, sd = 200) data$group <- ordered(data$group) gam <- mgcv::gam(y ~ s(x) + group, data=data) plot1 <- plotGAM(gamFit = gam, smooth.cov = "x", groupCovs = NULL, rawOrFitted = "raw", plotCI=TRUE, orderedAsFactor = FALSE)#> Warning: There are one or more factors in the model fit, please consider plotting by group since plot might be unprecisegam <- mgcv::gam(y ~ s(x) + group + s(x, by=group), data=data) plot2 <- plotGAM(gamFit = gam, smooth.cov = "x", groupCovs = "group", rawOrFitted = "raw", orderedAsFactor = FALSE)