R/gamCluster.R
gamCluster.Rd
This function is able to run a Generalized Additive Model (GAM) using the mgcv package. All clusters must be labeled with integers in the mask passed as an argument.
gamCluster(image, mask, fourdOut = NULL, formula, subjData, mc.preschedule = TRUE, ncores = 1, ...)
image | Input image of type 'nifti' or vector of path(s) to images. If multiple paths, the script will call mergeNiftis() and merge across time. |
---|---|
mask | Input mask of type 'nifti' or path to mask. All clusters must be labeled with integers in the mask passed as an argument |
fourdOut | To be passed to mergeNifti, This is the path and file name without the suffix to save the fourd file. Default (NULL) means script won't write out 4D image. |
formula | Must be a formula passed to gam() |
subjData | Dataframe containing all the covariates used for the analysis |
mc.preschedule | Argument to be passed to mclapply, whether or not to preschedule the jobs. More info in parallel::mclapply |
ncores | Number of cores to use for the analysis |
... | Additional arguments passed to gam() |
Returns list of models fitted to the mean voxel intensity over region of interest.
image <- oro.nifti::nifti(img = array(1:1600, dim =c(4,4,4,25))) mask <- oro.nifti::nifti(img = array(1:4, dim = c(4,4,4,1))) set.seed(1) covs <- data.frame(x = runif(25)) fm1 <- "~ s(x)" models <- gamCluster(image=image, mask=mask, formula=fm1, subjData=covs, ncores = 1, method="REML")#> [1] "Created meanCluster Matrix" #> [1] "Created formula list" #> [1] "Running test model" #> [1] "Running parallel models" #> elapsed #> 0.1 #> [1] "Parallel Models Ran"