R/anovagamVoxel.R
anovagamVoxel.RdThis function computes analysis of variance tables for the fitted models after running a Generalized Additive Model (from mgcv::gam). The analysis will run in all voxels in the mask and will return the analysis of variance table for each voxel. Please check the mgcv::anova.gam documentation for further information about specific arguments used in anova.gam. Multi-model calls are disabled.
anovagamVoxel(image, mask, fourdOut = NULL, formula, subjData, dispersion = NULL, freq = FALSE, mc.preschedule = TRUE, ncores = 1, ...)
| image | Input image of type 'nifti' or vector of path(s) to images. If multiple paths, the script will call mergeNifti() and merge across time. |
|---|---|
| mask | Input mask of type 'nifti' or path to mask. Must be a binary mask |
| fourdOut | To be passed to mergeNifti, This is the path and file name without the suffix to save the fourd file. Default (NULL) means script won't write out 4D image. |
| formula | Must be a formula passed to gam() |
| subjData | Dataframe containing all the covariates used for the analysis |
| dispersion | To be passed to mgcv::anova.gam, Defaults to NULL. Dispersion Parameter, not normally used. |
| freq | To be passed to mgcv::anova.gam, Defaults to FALSE. Frequentist or Bayesian approximations for p-values |
| mc.preschedule | Argument to be passed to mclapply, whether or not to preschedule the jobs. More info in parallel::mclapply |
| ncores | Number of cores to use |
| ... | Additional arguments passed to gam() |
Returns list of models fitted to each voxel over the masked images passed to function.
image <- oro.nifti::nifti(img = array(1:200, dim =c(2,2,2,25))) mask <- oro.nifti::nifti(img = array(0:1, dim = c(2,2,2,1))) set.seed(1) covs <- data.frame(x = runif(25), y=runif(25)) fm1 <- "~ s(x) + y" models <- anovagamVoxel(image=image, mask=mask, formula=fm1, subjData=covs, ncores = 1)#> [1] "Created time series to matrix" #> [1] "Created formula list" #> [1] "Running test ANOVA" #> [1] "Running parallel ANOVAs" #> elapsed #> 0.07 #> [1] "Parallel ANOVAs Ran"